423 research outputs found

    Decoupling of superconducting layers in magnetic superconductor RuSr_{2}GdCu_{2}O_{8}

    Full text link
    We propose the model for magnetic properties of the magnetic superconductor RuSr2_{2}GdCu2_{2}O8_{8}, which incorporates the theory of the superconducting/ferromagnetic multilayers. The transition line Td(h)T_{d}(h), on which the Josephson coupled superconducting planes are decoupled, i.e. jc(Td)=0% j_{c}(T_{d})=0, is calculated as a function of the exchange energy hh. As the result of this decoupling a nonmonotonic behavior of magnetic properties, like the lower critical field Hc1H_{c1}, Josephson plasma frequency, etc. is realized near (or by crossing) the Td(h)T_{d}(h) line. The obtained results are used in analyzing the newly discovered antiferromagnetic ruthenocuprate RuSr2_{2}GdCu2_{2}O8_{8} with possible weak ferromagnetic order in the RuO planes.Comment: 12 pages, 3 figs embede

    Magnetism and Superconductivity in (RE)Ni2B2C: The Case of TmNi2B2C

    Full text link
    The recently reported coexistence of an oscillatory magnetic order with the wave vector Q=0.241 \AA^{-1} and superconductivity in TmNi2B2C is analyzed theoretically. It is shown that the oscillatory magnetic order and superconductivity interact predominantly via the exchange interaction between localized moments (LM's) and conduction electrons, while the electromagnetic interaction between them is negligible. In the coexistence phase of the clean TmNi2B2C the quasiparticle spectrum should have a line of zeros at the Fermi surface, giving rise to the power law behavior of thermodynamic and transport properties. Two scenarios of the origin of the oscillatory magnetic order in TmNi2B2C are analyzed: a) due to superconductivity and b) independently on superconductivity. Experiments in magnetic field are proposed in order to choose between them.Comment: 12 pages with 2 PS figures, RevTe

    Detecting child grooming behaviour patterns on social media

    Get PDF
    Online paedophile activity in social media has become a major concern in society as Internet access is easily available to a broader younger population. One common form of online child exploitation is child grooming, where adults and minors exchange sexual text and media via social media platforms. Such behaviour involves a number of stages performed by a predator (adult) with the final goal of approaching a victim (minor) in person. This paper presents a study of such online grooming stages from a machine learning perspective. We propose to characterise such stages by a series of features covering sentiment polarity, content, and psycho-linguistic and discourse patterns. Our experiments with online chatroom conversations show good results in automatically classifying chatlines into various grooming stages. Such a deeper understanding and tracking of predatory behaviour is vital for building robust systems for detecting grooming conversations and potential predators on social media

    Supergravity with cosmological constant and the AdS group

    Full text link
    It is shown that the supersymmetric extension of the Stelle-West formalism permits the construction of an action for (3+1)(3+1)-dimensional N=1 supergravity with cosmological constant genuinely invariant under the OSp(4/1).OSp(4/1). Since the action is invariant under the supersymmetric extension of the AdSAdS group, the supersymmetry algebra closes off shell without the need for auxiliary fields. The limit case m→0m\to 0, i.e.(3+1)(3+1) -dimensional N=1 supergravity invariant under the Poincar\'{e} supergroup is also discussed.Comment: 10 page

    The NuTeV Anomaly, Neutrino Mixing, and a Heavy Higgs Boson

    Full text link
    Recent results from the NuTeV experiment at Fermilab and the deviation of the Z invisible width, measured at LEP/SLC, from its Standard Model (SM) prediction suggest the suppression of neutrino-Z couplings. Such suppressions occur naturally in models which mix the neutrinos with heavy gauge singlet states. We postulate a universal suppression of the Z-nu-nu couplings by a factor of (1-epsilon) and perform a fit to the Z-pole and NuTeV observables with epsilon and the oblique correction parameters S and T. Compared to a fit with S and T only, inclusion of epsilon leads to a dramatic improvement in the quality of the fit. The values of S and T preferred by the fit can be obtained within the SM by a simple increase in the Higgs boson mass. However, if the W mass is also included in the fit, a non-zero U parameter becomes necessary which cannot be supplied within the SM. The preferred value of epsilon suggests that the seesaw mechanism may not be the reason why neutrinos are so light.Comment: 19 pages, REVTeX4, 8 postscript figures. Updated references. Typos correcte

    Edge reconstruction in the fractional quantum Hall regime

    Full text link
    The interplay of electron-electron interaction and confining potential can lead to the reconstruction of fractional quantum Hall edges. We have performed exact diagonalization studies on microscopic models of fractional quantum Hall liquids, in finite size systems with disk geometry, and found numerical evidence of edge reconstruction under rather general conditions. In the present work we have taken into account effects like layer thickness and Landau level mixing, which are found to be of quantitative importance in edge physics. Due to edge reconstruction, additional nonchiral edge modes arise for both incompressible and compressible states. These additional modes couple to electromagnetic fields and thus can be detected in microwave conductivity measurements. They are also expected to affect the exponent of electron Green's function, which has been measured in tunneling experiments. We have studied in this work the electric dipole spectral function that is directly related to the microwave conductivity measurement. Our results are consistent with the enhanced microwave conductivity observed in experiments performed on samples with an array of antidots at low temperatures, and its suppression at higher temperatures. We also discuss the effects of the edge reconstruction on the single electron spectral function at the edge.Comment: 19 pages, 12 figure

    Removing the Big Bang Singularity: The role of the generalized uncertainty principle in quantum gravity

    Full text link
    The possibility of avoiding the big bang singularity by means of a generalized uncertainty principle is investigated. In relation with this matter, the statistical mechanics of a free-particle system obeying the generalized uncertainty principle is studied and it is shown that the entropy of the system has a finite value in the infinite temperature limit. It is then argued that negative temperatures and negative pressures are possible in this system. Finally, it is shown that this model can remove the big bang singularity.Comment: 8 pages, Accepted for publication in Astrophysics & Space Scienc

    Gravitation and inertia; a rearrangement of vacuum in gravity

    Full text link
    We address the gravitation and inertia in the framework of 'general gauge principle', which accounts for 'gravitation gauge group' generated by hidden local internal symmetry implemented on the flat space. We connect this group to nonlinear realization of the Lie group of 'distortion' of local internal properties of six-dimensional flat space, which is assumed as a toy model underlying four-dimensional Minkowski space. The agreement between proposed gravitational theory and available observational verifications is satisfactory. We construct relativistic field theory of inertia and derive the relativistic law of inertia. This theory furnishes justification for introduction of the Principle of Equivalence. We address the rearrangement of vacuum state in gravity resulting from these ideas.Comment: 17 pages, no figures, revtex4, Accepted for publication in Astrophys. Space Sc

    Spin light of electron in dense matter

    Full text link
    We derive the modified Dirac equation for an electron undergos an influence of the standard model interaction with the nuclear matter. The exact solutions for this equation and the electron energy spectrum in matter are obtained. This establishes a rather powerful method for investigation of different processes that can appear when electrons propagate in background matter. On this basis we study in detail the spin light of electron in nuclear matter, a new type of electromagnetic radiation which can be emitted by an electron moving in dense matter.Comment: 11 pages in LaTex, 4 figures, typos correcte

    Quantum Gravitational Corrections to the Real Klein-Gordon Field in the Presence of a Minimal Length

    Full text link
    The (D+1)-dimensional (β,β′)(\beta,\beta')-two-parameter Lorentz-covariant deformed algebra introduced by Quesne and Tkachuk [C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. \textbf {39}, 10909 (2006).], leads to a nonzero minimal uncertainty in position (minimal length). The Klein-Gordon equation in a (3+1)-dimensional space-time described by Quesne-Tkachuk Lorentz-covariant deformed algebra is studied in the case where β′=2β\beta'=2\beta up to first order over deformation parameter β\beta. It is shown that the modified Klein-Gordon equation which contains fourth-order derivative of the wave function describes two massive particles with different masses. We have shown that physically acceptable mass states can only exist for β<18m2c2\beta<\frac{1}{8m^{2}c^{2}} which leads to an isotropic minimal length in the interval 10−17m<(△Xi)0<10−15m10^{-17}m<(\bigtriangleup X^{i})_{0}<10^{-15}m. Finally, we have shown that the above estimation of minimal length is in good agreement with the results obtained in previous investigations.Comment: 10 pages, no figur
    • …
    corecore